

Colophon
Copyright © 2020-2024 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0

International (CC BY-ND).

build-date: 2024-02-02

build-version: 169135e-dirty

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be

found in the Raspberry Pi Pico C/C++ SDK book. Source code included in the documentation is

Copyright © 2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.) and licensed under the 3-

Clause BSD license.

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM

TIME TO TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO

EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the

RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for

their selection and use of the RESOURCES and any application of the products described in them. User agrees to

indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the

RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use

of the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous

environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or

communication systems, air traffic control, weapons systems or safety-critical applications (including life support

systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or

severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied

warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High

Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not

expand or otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties

expressed in them.

Hardware design with RP2040

Legal disclaimer notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Table of contents
Colophon . 1

Legal disclaimer notice . 1

1. About the RP2040 . 3

2. Minimal design example . 5

2.1. Power . 6

2.1.1. Input supply . 6

2.1.2. Decoupling capacitors. 7

2.1.3. Internal voltage regulator . 7

2.2. Flash storage . 8

2.3. Crystal oscillator . 9

2.3.1. Recommended crystal . 10

2.4. I/Os . 10

2.4.1. USB . 10

2.4.2. I/O headers . 11

2.5. Schematic . 12

2.6. Supported flash chips. 12

2.7. Making a PCB . 13

3. The VGA, SD card & audio demo boards for Raspberry Pi Pico and Raspberry Pi Pico W . 14

3.1. Power . 15

3.1.1. Power input. 15

3.1.2. Audio power supply . 18

3.2. VGA video . 18

3.2.1. Resistor DAC . 19

3.2.2. User buttons . 20

3.3. SD card . 21

3.3.1. UART . 21

3.3.2. Debug – SWD . 22

3.4. Audio . 22

3.4.1. PWM audio . 22

3.4.2. PCM/I2S audio . 23

3.5. Raspberry Pi Pico and Raspberry Pi Pico W . 23

3.6. Schematics . 27

Appendix A: Using the rescue debug port . 30

Overview . 30

Activating the rescue DP from OpenOCD . 30

Appendix B: Documentation release history . 32

Hardware design with RP2040

Table of contents 2

Chapter 1. About the RP2040
RP2040 is a low-cost, high-performance microcontroller device with flexible digital interfaces. Key features:

• Dual Cortex M0+ processors, up to 133MHz

• 264kB of embedded SRAM in 6 banks

• 30 multifunction GPIO

• 6 dedicated I/O for SPI flash (supporting XIP)

• Dedicated hardware for commonly used peripherals

• Programmable I/O for extended peripheral support

• 4 channel ADC with internal temperature sensor, 500ksps, 12-bit conversion

• USB 1.1 host/device

Figure 1. A system

overview of the

RP2040 chip

Code may be executed directly from external memory, through a dedicated SPI, DSPI or QSPI interface. A small cache

improves performance for typical applications.

Debug is available via the SWD interface.

Internal SRAM is arranged in banks which can contain code or data and is accessed via dedicated AHB bus fabric

connections, allowing bus masters to access separate bus slaves without being stalled.

DMA bus masters are available to offload repetitive data transfer tasks from the processors.

GPIO pins can be driven directly, or from a variety of dedicated logic functions.

Dedicated peripheral IP provides fixed functions such as SPI, I2C, UART.

Flexible configurable PIO controllers can be used to provide a wide variety of I/O functions.

A simple USB controller with embedded PHY can be used to provide FS/LS host or device connectivity under software

Hardware design with RP2040

Chapter 1. About the RP2040 3

control.

4 GPIOs also share package pins with ADC inputs.

2 PLLs are available to provide a USB or ADC fixed 48MHz clock, and a flexible system clock up to 133MHz

An internal voltage regulator will supply the core voltage so the end product only needs supply the I/O voltage.

Hardware design with RP2040

Chapter 1. About the RP2040 4

Chapter 2. Minimal design example
Figure 2. KiCad 3D

rendering of the

minimal design

example

This minimal design example is intended to demonstrate how you can get started with your own RP2040 based PCB

designs. It consists of very nearly the minimum amount of circuitry required to make a functional design that can run

your code. Schematics and layout files are available for KiCad at https://datasheets.raspberrypi.com/rp2040/Minimal-

KiCAD.zip. KiCad is a free, open source suite of tools for designing PCBs and can be found at https://kicad.org/.

This example PCB has two copper layers, and has components on the top side only (this makes it cheaper and easier to

assemble). It also uses small SMD (surface-mount devices) components. The relatively large minimum track width,

clearances and hole sizes should make this design easily and cheaply manufacturable from a range of PCB suppliers.

The board is nominally 1mm thick, but it could be manufactured with a thicker PCB, for example 1.6mm is very

common, but you might run into difficulties with the USB characteristic impedance (discussed below).

Whilst it might be seen as beneficial to use large, easily hand-solderable components for such an example design, the

reality is that RP2040 is a 56 pin, 7×7mm QFN (Quad Flat No-leads) package with a small pitch (0.4mm pin-to-pin

spacing). This requires a considerable amount of skill and experience to hand solder successfully. We therefore

consider it best to have the PCBs machine assembled, however, if you are able to wield a soldering iron deftly enough to

solder a QFN package successfully, then the use of other small SMD components (such as 0402 capacitors) should

present few problems.

Hardware design with RP2040

Chapter 2. Minimal design example 5

https://datasheets.raspberrypi.com/rp2040/Minimal-KiCAD.zip
https://datasheets.raspberrypi.com/rp2040/Minimal-KiCAD.zip
https://kicad.org/

Figure 3. Schematic

section RP2040

connections

This design consists of four main elements: power, flash storage, crystal oscillator, and I/Os (input/outputs), and we’ll

consider each in turn below.

2.1. Power

At its simplest, RP2040 requires two different voltage supplies, 3.3V (for the I/O) and 1.1V (for the chip’s digital core).

Fortunately, there is an internal low-dropout voltage regulator (LDO) built into the device, which converts 3.3V to 1.1V for

us, so we don’t have to worry too much about the 1.1V supply.

2.1.1. Input supply

Figure 4. Schematic

section showing the

power input

The input power connection for this design is via the 5V VBUS pin of a Micro-USB connector (labelled J1 in Figure 4).

This is a common method of powering electronic devices, and it makes sense here, as RP2040 has USB functionality,

which we will be wiring to the data pins of this connector. As we need only 3.3V for this design, we need to lower the

incoming 5V USB supply, in this case, using a second, external LDO voltage regulator. The NCP1117 (U1) chosen here

has a fixed output of 3.3V, is widely available, and can provide up to 1A of current, which will be plenty for most designs.

Hardware design with RP2040

2.1. Power 6

A look at the datasheet for the NCP1117 tells us that this device requires a 10μF capacitor on the input, and another on

the output (C1 and C4).

2.1.2. Decoupling capacitors

Figure 5. Schematic

section showing the

RP2040 power supply

inputs, voltage

regulator and

decoupling capacitors

Another aspect of the power supply design are the decoupling capacitors required for RP2040. These provide two basic

functions. Firstly, they filter out power supply noise, and secondly, provide a local supply of charge that the circuits

inside RP2040 can use at short notice. This prevents the voltage level in the immediate vicinity from dropping too much

when the current demand suddenly increases. Because, of this, it is important to place decoupling close to the power

pins. Ordinarily, we recommend the use of a 100nF capacitor per power pin, however, we deviate from this rule in a

couple of instances.

Figure 6. Section of

layout showing

RP2040 routing and

decoupling

Firstly, in order to be able to have enough space for all of the chip pins to be able to be routed out, away from the device,

we have to compromise with the amount of decoupling capacitors we can use. In this design, pins 48 and 49 of RP2040

share a single capacitor (C9 in Figure 6 and Figure 5), as there is not a lot of room on that side of the device. This could

be overcome if we used more complex/expensive technology, such as smaller components, or a four layer PCB with

components on both the top and bottom sides. This is a design trade-off; we have decreased the complexity and cost, at

the expense of having less decoupling capacitance, and capacitors which are slightly further away from the chip than is

optimal (this increases the inductance). This could have the effect of limiting the maximum speed the design could

operate at, as the voltage supply could get too noisy and drop below the minimum allowed voltage; but for most

applications, this trade-off should be acceptable.

Secondly, the internal voltage regulator has its own special requirements, as you can see below.

2.1.3. Internal voltage regulator

The internal voltage regulator produces a 1.1V supply from an input of 3.3V. We simply connect the VREG_OUT pin to

the DVDD pins. The regulator does have some special requirements when it comes to decoupling capacitors. We must

Hardware design with RP2040

2.1. Power 7

place 1μF capacitors close to both the input (VREG_IN) and the output (VREG_OUT), in order to provide a stable 1.1V

supply. The voltage regulator also has restrictions on the amount of ESR (equivalent series resistance) of these

capacitors, but in practice, by using physically small ceramic chip capacitors, these requirements will almost certainly

be met. In this design, capacitors C8 and C10 (Figure 5) are ceramic capacitors of 0402 size.

For more details on the on-chip voltage regulator see on-chip voltage regulator

2.2. Flash storage

Figure 7. Schematic

section showing the

flash memory and

USB_BOOT circuitry

In order to be able to store program code which RP2040 can boot and run from, we need to use a flash memory,

specifically, a quad SPI flash memory. The device chosen here is an W25Q128JVS device (U2 in the Figure 7), which is a

128Mbit chip (16MB). This is the largest memory size that RP2040 can support. If your particular application doesn’t

need as much storage, then a smaller, cheaper memory could be used instead.

For more details on selecting a flash device, see Section 4.10 in the RP2040 Datasheet.

As this databus can be quite high frequency and is regularly in use, the QSPI pins of RP2040 should be wired directly to

the flash, using short connections to maintain the signal integrity, and to also reduce crosstalk in surrounding circuits.

Crosstalk is where signals on one circuit net can induce unwanted voltages on a neighbouring circuit, potentially

causing errors to occur.

The QSPI_SS signal is a special case. It is connected to the flash directly, but it also has two resistors connected to it.

The first (R2) is a pull-up to the 3.3V supply. The flash memory requires the chip-select input to be at the same voltage

as its own 3.3V supply pin as the device is powered up, otherwise, it does not function correctly. When the RP2040 is

powered up, its QSPI_SS pin will automatically default to a pull-up, but there is a short period of time during switch-on

where the state of the QSPI_SS pin cannot be guaranteed. The addition of a pull-up resistor ensures that this

requirement will always be satisfied. R2 is marked as DNF (Do Not Fit) on the schematic, as we have found that with

this particular flash device, the external pull-up is unnecessary. However, if a different flash is used, it may become

important to be able to insert a 10kΩ resistor here, so it has been included just in case. The second resistor (R1) is a

1kΩ resistor, connected to a header (J2) labelled 'USB_BOOT'. This is because the QSPI_SS pin is used as a 'boot strap';

RP2040 checks the value of this I/O during the boot sequence, and if it is found to be a logic 0, then RP2040 reverts to

the BOOTSEL mode, where RP2040 presents itself as a USB mass storage device, and code can be copied directly to it.

If we simply place a jumper wire between the pins of J2, we pull QSPI_SS pin to ground, and if the device is then

subsequently reset (e.g. by toggling the RUN pin), RP2040 will restart in BOOTSEL mode instead of attempting to run the

contents of the flash.

Both R1 and R2 should be placed close to the flash chip, so we avoid additional lengths of copper tracks which could

affect the signal.

Hardware design with RP2040

2.2. Flash storage 8

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#voltage_regulator
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#section_ssi

2.3. Crystal oscillator

Figure 8. Schematic

section showing the

crystal oscillator and

load capacitors

Strictly speaking, RP2040 does not actually require an external clock source, as it has its own internal oscillator.

However, as the frequency of this internal oscillator is not well defined or controlled, varying from chip to chip, as well

as with different supply voltages and temperatures, it is recommended to use a stable external frequency source.

Applications which rely on exact frequencies are not possible without an external frequency source, USB being a prime

example.

Providing an external frequency source can be done in one of two ways: either by providing a clock source with a CMOS

output (square wave of IOVDD voltage) into the XIN pin, or by using a 12MHz crystal connected between XIN and XOUT.

Using a crystal is the preferred option here, as they are both relatively cheap and very accurate.

The chosen crystal for this design is an ABM8-272-T3 (Y1 in Figure 8). This is the same 12MHz crystal used on the

Raspberry Pi Pico. We highly recommend using this crystal along with the accompanying circuitry to ensure that the

clock starts quickly under all conditions without damaging the crystal itself. The crystal has a 30ppm frequency

tolerance, which should be good enough for most applications. Along with a frequency tolerance of +/-30ppm, it has a

maximum ESR of 50Ω, and a load capacitance of 10pF, both of which had a bearing on the choice of accompanying

components.

For a crystal to oscillate at the desired frequency, the manufacturer specifies the load capacitance that it needs for it to

do so, and in this case, it is 10pF. This load capacitance is achieved by placing two capacitors of equal value, one on

each side of the crystal to ground (C2 and C3). From the crystal’s point of view, these capacitors are connected in series

between its two terminals. Basic circuit theory tells us that they combine to give a capacitance of (C2*C3)/(C2+C3), and

as C2=C3, then it is simply C2/2. In this example, we’ve used 15pF capacitors, so the series combination is 7.5pF. In

addition to this intentional load capacitance, we must also add a value for the unintentional extra capacitance, or

parasitic capacitance, that we get from the PCB tracks and the XIN and XOUT pins of RP2040. We’ll assume a value of

3pF for this, and as this capacitance is in parallel to C2 and C3, we simply add this to give us a total load capacitance of

10.5pF, which is close enough to the target of 10pF. As you can see, the parasitic capacitance of the PCB traces are a

factor, and we therefore need to keep them small so we don’t upset the crystal and stop it oscillating as intended. Try

and keep the layout as short as possible.

The second consideration is the maximum ESR (equivalent series resistance) of the crystal. We’ve opted for a device

with a maximum of 50Ω, as we’ve found that this, along with a 1kΩ series resistor (R5), is a good value to prevent the

crystal being over-driven and being damaged when using an IOVDD level of 3.3V. However, if IOVDD is less than 3.3V,

then the drive current of the XIN/XOUT pins is reduced, and you will find that the amplitude of the crystal is lower, or

may not even oscillate at all. In this case, a smaller value of the series resitor will need to be used. Any deviation from

the crystal circuit shown here, or with an IOVDD level other than 3.3V, will require extensive testing to ensure that the

crystal oscillates under all conditions, and starts-up sufficiently quickly as not to cause problems with your application.

Hardware design with RP2040

2.3. Crystal oscillator 9

2.3.1. Recommended crystal

For original designs using RP2040 we recommend using the Abracon ABM8-272-T3. For example, in addition to the

minimal design example, see the Pico board schematic in Appendix B of the Pico Datasheet and the Pico design files.

For the best performance and stability across typical operating temperature ranges, use the Abracon ABM8-272-T3. You

can source the ABM8-272-T3 directly from Abracon or from an authorised reseller. Pico has been specifically tuned for

the ABM8-272-T3, which has the following specifications:

Table 1. Key Crystal

Specifications.
Parameters Minimum Typical Maximum Units Notes

Center Frequency 12.000 12.000 12.000 MHz

Operation Mode Fundamental-AT Fundamental-AT Fundamental-AT

Operating Temperature -40 +85 ºC

Storage Temperature -55 +125 ºC

Frequency Tolerance (25ºC) -30 +30 ppm

Frequency Stability (25ºC) -30 +30 ppm

Equivalent Series Resistance (R1) 50 Ω

Shunt Capacitance (C0) 3.0 pF

Load Capacitance (CL) 10 10 10 pF

Drive Level 10 200 µW

Aging -5 +5 ppm @25±3°C, 1st year

Insulation Resistance 500 MΩ @100Vdc±15V

Even if you use a crystal with similar specifications, you will need to test the circuit over a range of temperatures to

ensure stability.

The crystal oscillator is powered from the VDDIO voltage. As a result, the Abracon crystal and that particular damping

resistor are tuned for 3.3V operation. If you use a different IO voltage, you will need to re-tune.

Any changes to crystal parameters risk instability across any components connected to the crystal circuit.

If you can’t source the recommended crystal directly from Abracon or a reseller, contact applications@raspberrypi.com.

2.4. I/Os

2.4.1. USB

Figure 9. Schematic

section showing the

USB pins of RP2040

and series termination

The RP2040 provides two pins to be used for full speed (FS) or low speed (LS) USB, either as a host or device, depending

on the software used. As we’ve already discussed, RP2040 can also boot as a USB mass storage device, so wiring up

these pins to the USB connector (J1 in Figure 4) makes sense. The USB_DP and USB_DM pins on RP2040 do not require

Hardware design with RP2040

2.4. I/Os 10

https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf#pico-schematic-diagram
https://datasheets.raspberrypi.com/pico/RPi-Pico-R3-PUBLIC-20200119.zip
mailto:applications@raspberrypi.com

any additional pull-ups or pull-downs (required to indicate speed, FS or LS, or whether it is a host or device), as these are

built in to the I/Os. However, these I/Os do require 27Ω series termination resistors (R3 and R4 in Figure 9), placed

close to the chip, in order to meet the USB impedance specification.

Even though RP2040 is limited to full speed data rate (12Mbps), we should try and makes sure that the characteristic

impedance of the transmission lines (the copper tracks connecting the chip to the connector) are close to the USB

specification of 90Ω (measured differentially). On a 1mm thick board such as this, if we use 0.8mm wide tracks on

USB_DP and USB_DM, with a gap of 0.15mm between them, we should get a differential characteristic impedance of

around 90Ω. This is to ensure that the signals can travel along these transmission lines as cleanly as possible,

minimising voltage reflections which can reduce the integrity of the signal. In order for these transmission lines to work

properly, we need to make sure that directly below these lines is a ground. A solid, uninterrupted area of ground copper,

stretching the entire length of the track. On this design, almost the entirety of the bottom copper layer is devoted to

ground, and particular care was taken to ensure that the USB tracks pass over nothing but ground. If a PCB thicker than

1mm is chosen for your build, then we have two options. We could re-engineer the USB transmission lines to

compensate for the greater distance between the track and ground underneath (which could be a physical

impossibility), or we could ignore it, and hope for the best. USB FS can be quite forgiving, but your mileage may vary. It is

likely to work in many applications, but it’s probably not going to be compliant to the USB standard.

2.4.2. I/O headers

Figure 10. Schematic

section showing the

2.54mm I/O headers

In addition to the USB connector already mentioned, there are a pair of 2×18-way 2.54mm headers (J3 and J4 in Figure

10), one on each side of the board, to which the rest of the I/O have been connected. As this is a general purpose

design, with no particular application in mind, the I/O have been made available to be connected as the user wishes. The

inner row of pins on each header are the I/Os, and the outer row are all connected to ground. It is good practice to

include many grounds on I/O connectors. This helps to maintain a low impedance ground, and also to provide plenty of

potential return paths for currents travelling to and from the I/O connections. This is important to minimise electro-

magnetic interference which can be caused by the return currents of quickly switching signals taking long, looping

paths to complete the circuit.

Both headers are on the same 2.54mm grid, which makes connecting this board to other things, such as breadboards,

easier. You might want to consider fitting only a single row 18-way header instead of the 2×18-way, dispensing with the

outer row of ground connections, to make it more convenient to fit to a breadboard.

Hardware design with RP2040

2.4. I/Os 11

2.5. Schematic

The complete schematic is shown below. As previously mentioned, the design files are available in KiCad format.

Figure 11. Complete

schematic of the

minimal board

2.6. Supported flash chips

The initial flash probe sequence, used by the bootrom to extract the second stage from flash, uses an 03h serial read

command, with 24-bit addressing, and a serial clock of approximately 1MHz. It repeatedly cycles through the four

combinations of clock polarity and clock phase, looking for a valid second stage CRC32 checksum.

As the second stage is then free to configure execute-in-place using the same 03h serial read command, RP2040 can

perform cached flash execute-in-place with any chip supporting 03h serial read with 24-bit addressing, which includes

most 25-series flash devices. The SDK provides an example second stage for CPOL=0 CPHA=0, at https://github.com/

raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/boot2_generic_03h.S. To support flash programming

using the routines in the bootrom, the device must also respond to the following commands:

• 02h 256-byte page program

• 05h status register read

• 06h set write enable latch

• 20h 4kB sector erase

RP2040 also supports a wide variety of dual-SPI and QSPI access modes. For example, https://github.com/raspberrypi/

pico-sdk/blob/master/src/rp2_common/boot_stage2/boot2_w25q080.S configures a Winbond W25Q-series device for

quad-IO continuous read mode, where RP2040 sends quad-IO addresses (without a command prefix) and the flash

responds with quad-IO data.

Some caution is needed with flash XIP modes where the flash device stops responding to standard serial commands,

like the Winbond continuous read mode mentioned above. This can cause issues when RP2040 is reset, but the flash

device is not power-cycled, because the flash will then not respond to the bootrom’s flash probe sequence. Before

issuing the 03h serial read, the bootrom always issues the following fixed sequence, which is a best-effort sequence for

Hardware design with RP2040

2.5. Schematic 12

https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/boot2_generic_03h.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/boot2_generic_03h.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/boot2_w25q080.S
https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/boot_stage2/boot2_w25q080.S

discontinuing XIP on a range of flash devices:

• CSn=1, IO[3:0]=4’b0000 (via pull downs to avoid contention), issue ×32 clocks

• CSn=0, IO[3:0]=4’b1111 (via pull ups to avoid contention), issue ×32 clocks

• CSn=1

• CSn=0, MOSI=1’b1 (driven low-Z, all other I/Os Hi-Z), issue ×16 clocks

If your chosen device does not respond to this sequence when in its continuous read mode, then it must be kept in a

state where each transfer is prefixed by a serial command, otherwise RP2040 will not be able to recover following an

internal reset.

2.7. Making a PCB

The minimal design example, see Chapter 2, was deliberately designed with two copper layers, and with components on

the top side only. The design rules are relaxed, to allow low cost PCB fabrication. This particular design has been

verified to work with Eurocircuits (https://www.eurocircuits.com/) standard PCB pool, though there should be few

problems having it manufactured by other PCB prototyping manufacturers.

Hardware design with RP2040

2.7. Making a PCB 13

https://www.eurocircuits.com/

Chapter 3. The VGA, SD card & audio
demo boards for Raspberry Pi Pico
and Raspberry Pi Pico W

Figure 12. KiCad 3D

rendering of the VGA,

SD card & audio

design example for

Raspberry Pi Pico

(top) and Raspberry Pi

Pico W (bottom)

This example design is intended to serve two distinct purposes. Firstly, we show how we can design a PCB that

incorporates Raspberry Pi Pico or Raspberry Pi Pico W as a module, used simply as a component on a larger design.

Secondly, some of the more complex RP2040 applications require specific additional hardware in order to function

correctly. This design provides some example designs for four of these applications, VGA video, SD card storage, and

two flavours of audio output; analogue PWM, and digital I2S (Raspberry Pi Pico only). Experimental software using

these features can be found at Pico Playground.

This design is built using Raspberry Pi Pico or Raspberry Pi Pico W, but as both provide direct access to the pins of

RP2040, much of the circuitry shown here would be equally applicable to designs based around RP2040 itself.

Schematics and layout files are available for KiCad at https://datasheets.raspberrypi.com/rp2040/VGA-KiCAD.zip and

https://datasheets.raspberrypi.com/rp2040/VGA-PicoW-KiCAD.zip. KiCad is a free, open-source suite of tools for

designing PCBs and can be found at https://kicad.org/.

One of the key differences between designing with the Raspberry Pi Pico/Raspberry Pi Pico W and RP2040 is that not all

Hardware design with RP2040

Chapter 3. The VGA, SD card & audio demo boards for Raspberry Pi Pico and Raspberry Pi Pico W 14

https://github.com/raspberrypi/pico-playground
https://datasheets.raspberrypi.com/rp2040/VGA-KiCAD.zip
https://datasheets.raspberrypi.com/rp2040/VGA-PicoW-KiCAD.zip
https://kicad.org/

of the I/Os of RP2040 are available to be used on Raspberry Pi Pico and Raspberry Pi Pico W. This is because some of

the I/Os are used for internal house-keeping (such as power supply control and monitoring, and an LED) or the wireless

interface on Raspberry Pi Pico W, and are not exposed to the outside world. This introduces some challenges,

particularly as our choice of application examples want more pins than are available. We believe we’ve thought of some

cunning solutions to this, especially when you consider that we’ve also added three user buttons and a UART

connection to the mix. We’ll go through these constraints, and their solutions, in detail later.

Schematic, PCB layout and Raspberry Pi Pico/Raspberry Pi Pico W footprint files are provided in KiCad format, with

similar design rules as the previous minimal design example in Chapter 2. This time around, whereas the minimal

design example has two layers, with a 1mm thick PCB, we’ve opted for a four-layer, 1.6mm thick PCB. This is primarily

because adding extra layers to our PCB means that we can now devote entire layers to power and ground. This is

important in a number of ways. Firstly, it improves power-supply decoupling. With the addition of these two layers, we

now have two large, parallel rectangles of copper; one connected to the power supply, the other to ground. These are

then separated by a thin dielectric material (an insulating PCB layer sandwiched between the copper layers), which

makes this a simple parallel plate decoupling capacitor. Secondly, and perhaps most importantly for this design, we

now have a variety of low-impedance paths back to RP2040 where the quickly changing I/O return currents can flow

back fast and unhindered, without creating current loops which can cause electromagnetic emissions. Another benefit

of moving to four layers is that as there is now less of a gap between signal tracks on the top layer and the ground plane

directly beneath, it is now much easier to create tracks of different characteristic impedances that may be required in

your designs. In this case, we will want 75Ω tracks for the VGA colour signals as VGA is a 75Ω system, using 75Ω cables

and 75Ω load termination in the monitor.

This design can be sub-divided into five sections: power, VGA, SD card, audio, and Raspberry Pi Pico/Raspberry Pi Pico

W itself.

3.1. Power

3.1.1. Power input

Figure 13.

Recommended ways

of powering Raspberry

Pi Pico and Raspberry

Pi Pico W

There are three main ways we can safely power Raspberry Pi Pico and Raspberry Pi Pico W, and the choice is entirely

dependent on your application. We can either use the micro USB connector on the device itself (option (a) in Figure 13),

or we can provide power to either the VBUS pin (option b), or the VSYS pin (option c).

Hardware design with RP2040

3.1. Power 15

 NOTE

The 3.3V pin is an output from Raspberry Pi Pico or Raspberry Pi Pico W and should not be connected to an external

power source. It is intended to be used as an output to provide power to external circuits.

Figure 14. Section of

schematic showing

power input

The VSYS pin is the main system power supply on Raspberry Pi Pico and Raspberry Pi Pico W. From this supply, a 3.3V

supply is generated and used to power RP2040; and also the 3.3V output pin which we can use to power circuits on our

design.

The VBUS pin is connected to the VBUS of the micro USB connector. There is an onboard diode connecting VBUS to

VSYS, which means that VBUS can be used to power VSYS, but not the other way around.

This design provides different options for providing the power, and the choice of which one to use depends very much on

your application. The first thing to consider is if the USB functionality of Raspberry Pi Pico or Raspberry Pi Pico W will be

used.

3.1.1.1. Not using USB

If we are not using USB, then we must provide power for Raspberry Pi Pico or Raspberry Pi Pico W. One way of doing

this is to provide power to Raspberry Pi Pico/Raspberry Pi Pico W from our board, through Raspberry Pi Pico or Raspberry

Pi Pico W’s pins. See Figure 15 for an illustration of this. The preferred way of implementing this is to provide a voltage

to the VSYS pin via a Schottky diode (Figure 14). The one-way nature of the diode ensures we don’t encounter any

problems if we also supply power to the VBUS pin (accidentally or deliberately). Raspberry Pi Pico and Raspberry Pi Pico

W can take a voltage of between 1.8 and 5.5V, as they have an internal buck-boost regulator (one which can regulate the

output to a higher or lower voltage than its input), but due to the fact we have an additional voltage regulator in our

design (U1, more on this later), we need to make sure that VSYS is greater than 3.5V so that U1 will operate correctly.

Alternatively, we could provide power to the VBUS pin (not to be confused with the VBUS connection on Raspberry Pi

Pico or Raspberry Pi Pico W’s USB connector), rather than the VSYS pin. This would internally power VSYS via the

onboard diode, but we must be sure that we do not connect another power supply to the USB connector on Raspberry Pi

Pico or Raspberry Pi Pico W.

On this design we use a micro USB connector (J5 in Figure 14) to provide a 5V power input. This is then connected to

VSYS via D1, which is an MBR120 Schottky diode that can carry up to 1A. There is also an optional jumper (J6) we could

use if we need to power the VBUS pin, but as we are not using USB, this is unnecessary.

As a third alternative, we could attach a 5V supply to Raspberry Pi Pico or Raspberry Pi Pico W’s USB connector, rather

than our board’s USB connector, similar to device mode discussed below and in Figure 16.

3.1.1.2. Using USB

If we are going to be using USB, then we need to know whether it will be in host or device mode.

Hardware design with RP2040

3.1. Power 16

3.1.1.2.1. Device mode

If we are using Raspberry Pi Pico or Raspberry Pi Pico W in device mode, then the host it is attached to will provide 5V

on the VBUS pin of the USB connector, which in turn will internally provide VSYS with power (5V minus the drop across

the onboard diode). This is everything we need, voltage-wise, we do not need to do anything extra on our design; but this

power is only available when the USB host is attached. See Figure 16. If we need to be self-powering, i.e. not reliant on

the incoming 5V from the USB host, then we need to provide our own power from the carrier board. Again, we can

connect a 5V supply to the micro USB connector J5, so that we provide around 5V to the VSYS pin of Raspberry Pi

Pico/Raspberry Pi Pico W. Make sure jumper J6 is open circuit, as this could result in directly connecting two 5V

supplies together. See Figure 15 for an illustration.

3.1.1.2.2. Host mode

If we are using USB host mode, then this time, Raspberry Pi Pico/Raspberry Pi Pico W needs to provide 5V to the VBUS

pin of its own micro USB connector (not J5). This means that our carrier board design must supply the VBUS pin with

5V, as well as powering Raspberry Pi Pico/Raspberry Pi Pico W. We can do this on our design by simply connecting the

micro USB connector (J5 on the schematic) to a 5V supply, and also by fitting a jumper on J6, so that this 5V supply

gets connected directly to the VBUS pin of Raspberry Pi Pico/Raspberry Pi Pico W. VSYS is supplied by a combination of

the onboard diode on Raspberry Pi Pico and Raspberry Pi Pico W, as well as diode D1 on our design, which is perfectly

safe.

Figure 15. Powering

the system using the

USB power connector

on the VGA, SD card &

audio board

Figure 16. Powering

the system using the

USB connector on

Raspberry Pi

Pico/Raspberry Pi

Pico W

Hardware design with RP2040

3.1. Power 17

3.1.2. Audio power supply

Figure 17. Schematic

section showing an

additional LDO used

for powering the audio

In addition to providing power for Raspberry Pi Pico and Raspberry Pi Pico W, we have some circuits on this design

which need suitable power supplies. Fortunately, they are all 3.3V, so we can simply use the 3.3V supply from Raspberry

Pi Pico or Raspberry Pi Pico W itself. However, as we have some audio circuitry on this design, it’s good to have a nice,

clean power source, without all the digital switching noise, for the sensitive audio output sections. To this end, we’ve

included a 3.3V linear voltage regulator (U1 in Figure 17), specifically for the audio output, which is supplied by VSYS

(which is always present, unlike VBUS). This device is a TLV70033, which is a low-dropout (LDO) regulator, with a fixed

3.3V output. This can supply 200mA, which is more than enough for the audio circuits used here. The datasheet for the

TLV70033 tells us that we need 1μF capacitors on the input and output pins. We’ve used 0603 sized ones here (C1 and

C2).

 NOTE

The switching regulator used on Raspberry Pi Pico and Raspberry Pi Pico W has two operating modes, depending on

the amount of current running through it. In low-current mode (less than a few tens of mA), in order to increase its

efficiency, it starts to run in power saving mode, which uses PFM (pulse frequency modulation). Ordinarily, this is a

good thing, as it increases efficiency, reducing the power consumed at low loads. However, this comes at a price:

namely a little more voltage ripple on the 3.3V supply. Most of the time this isn’t a problem, but for noise-sensitive

circuits, you might want to switch this power saving feature off, and return to the less efficient, but less noisy PWM

(pulse width modulation) mode. Raspberry Pi Pico and Raspberry Pi Pico W allow us to do this by forcing the

regulator to always use PWM mode, and we do this by setting GPIO23 on RP2040 high. In the VGA demo below, the

effects of this noise can be seen if we look carefully at the VGA monitor; we can see slight variations of colour in the

horizontal lines, as this supply noise is transferred directly to the DAC outputs. If we disable the PFM mode of the

regulator, this magically goes away.

3.2. VGA video

Hardware design with RP2040

3.2. VGA video 18

Figure 18. Schematic

section showing the

VGA video connector

The first application of RP2040 we’re demonstrating is VGA analogue video output. This particular example uses the

PIO (programmable I/O) on RP2040 to output a commonly used 16-bit RGB data format (RGB-565), and these digital

outputs then need to be converted to three analogue output signals: one for each colour. RGB-565 uses five bits each

for the red and blue channels, and six bits for the green. In addition to these 16 data bits, VGA monitors also require

HSYNC and VSYNC signals for horizontal and vertical blanking timing. That brings us to a total of 18 pins that are

needed. As we’ve mentioned before, pins are at a premium, and we want to use as few as possible so that we can cram

more functionality into this design. To this end, we can free up a pin by limiting the green channel to five bits, which will

make all the channels the same resolution, by removing the green LSB (least significant bit). It is still desirable for

RP2040 to process RGB-565 format data, so PIO will still output six bits of green data to the GPIOs; but we can choose

not to use the green LSB in the function select register of that particular GPIO, instead letting RP2040 use it for

something else (in this case, the clock for the SD card). The VGA PIO software requires that all 16 bits of data need to

be on contiguous (in unbroken, consecutive numerical order) GPIOs, with the sequence being red first, then green, then

blue, with the LSB first in each case, which introduces a further design constraint. Raspberry Pi Pico and Raspberry Pi

Pico W each have two contiguous rows of GPIOs available for our use: GPIOs 0 to 22, and 26 to 28. We therefore must

place VGA data somewhere in 0 to 22, and it makes sense to start at one end or the other in order to make sure there

are as many contiguous pins remaining for other functions as possible. We’ve chosen to use GPIO 0 to 15, which means

that the green LSB is GPIO 5, and this is going to be used as SD_CLK. HSYNC and VSYNC can go on any GPIO, as long

as they are next to each other. We’ve picked 16 and 17.

3.2.1. Resistor DAC

Hardware design with RP2040

3.2. VGA video 19

Figure 19. Schematic

section showing the

red channel of the

VGA resistor DAC

The three colour channels on a VGA connector need to be analogue signals, varying from 0 to 0.7V. We therefore need

to convert the digital, 3.3V outputs of RP2040 to an analogue signal. Dedicated video DACs (digital to analogue

converters) can be used to do this, but a cheaper and simpler method is shown here. You can create a simple DAC

using a group of resistors connected directly to the digital outputs. The values of the resistors are weighted to give

different amounts of significance to each bit, in the ratio 1:2:4:8:16. It’s not going to be as good as using a dedicated

video DAC - one of the major drawbacks is that any voltage variation on the IOVDD supply of RP2040 is going to be

present on the DAC output - but it’s cheaper, considerably less complex, and a lot more fun. If we look at the red

channel, net VGA_R on the schematic, we can see the red LSB (GPIO0) is connected to it through a 8.06kΩ resistor. The

next bit (GPIO1) has (roughly) half this (4.02kΩ), the next has half again, and so on for the rest of the bits. Ideally, for the

most linear DAC performance, we want exactly double the previous resistor value, but these are the nearest commonly

available 1% values. This means each GPIO output bit can contribute twice as much current through its resistor than the

previous bit, and all these individual current contributions are summed together at the output. The result of this is that if

all the bits are high (3.3V), corresponding with the maximum digital value, we have all five resistors in parallel to 3.3V.

Basic circuit theory tells us that this is 1/Rparallel = 1/499 + 1/1000 + 1/2000 + 1/4020 + 1/8060 = 0.00388, so Rparallel is

258Ω. If we have a monitor connected to this signal, then we will have a 75Ω resistor to ground inside the monitor (this

isn’t shown on this schematic). This creates a potential divider, with 3.3V connected to 258Ω, which in turn is then

connected to 75Ω to ground in the monitor. This means we have a full-scale voltage of 3.3 × 75 / (258 + 75) = 0.74V,

which is close enough to the target of 0.7V.

3.2.2. User buttons

The user buttons are not strictly part of the VGA, but because we’ve decided to add them (SW2, SW3 and SW4, see

Figure 19), connecting them to the LSBs of the red, green and blue channels, it’s important to talk about them, and on

their use in the software. We thought it was important to add a few buttons to this design, especially as VGA, SD card

and audio give us a lot of potential applications that could use a button or two (e.g. video or music controls, etc). As

we’ve already said, pins are at a premium, and we couldn’t afford to dedicate a pin or two to something as frivolous as

buttons, so we’ve come up with the idea of making the VGA LSBs multi-purpose, with a simple hack.

The basic idea is that the GPIO in question is used for VGA as usual during the active periods of video data, but during

the video blanking periods, when the DAC levels are not as critical, we can flip the GPIO direction to an input, and then

poll it, before flipping it back to an output for the next active video period. If button SW2 is pressed, then GPIO0 will be

connected to potential divider of a 1kΩ resistor (R20) to 3.3V, and 8.06kΩ (R30) to (worst-case) 0V. This means that

GPIO0 will see at least 2.93V, and will therefore register as logic 1. If the button is not depressed, then GPIO4 will be

0.7V or lower, which will result in a logic 0. Of course, this relies on a monitor’s 75Ω load resistor for the pull-down. If

there is no monitor present, then the user could activate the GPIO’s internal pull-down instead.

Obviously, if the button is pressed during active video transmission, then we might expect this to have an effect on the

DAC signal level. However, as we are only interfering with the LSB, any effect would be minimal, but the introduction of

the 1kΩ resistor (R20) in series with the button means that RP2040 will have little problem over-driving this, so the

effect on the DAC signal will be minimal. The final point to note regarding the DAC is that, as we’ve previously

Hardware design with RP2040

3.2. VGA video 20

mentioned, the outputs should have 75Ω characteristic impedance. On this PCB, we’ve used a 1.6mm, four-layer board

stack-up, with a gap of 0.36mm between the outer and inner layers. This means that track widths of 0.3mm gives us

roughly 75Ω.

3.3. SD card

Figure 20. Schematic

section showing the

micro SD card

connector

The second application we are demonstrating is using an SD card. This design has a micro SD card (J3), which has a 4-

bit data bus, as well as a clock (CLK) and command (CMD) signal. We can access the SD card in either 4-bit mode, SPI,

or 1-bit mode. The constraints our SD PIO software puts upon us is that the four data signals must be connected to

contiguous GPIOs. The CLK and CMD signals can go anywhere. As the VGA signals have used up GPIOs 0 to 17, we are

left with a contiguous block of five GPIOs, 18 to 22. We will use GPIO19 to 22 for the data bus, and GPIO18 for the CMD

signal. For the CLK signal, we are going to use GPIO5, which is in the middle of the VGA signals. If you remember, GPIO5

was earmarked for the 6th, unused bit of the green VGA output. This GPIO can be repurposed by selecting a different

function on the GPIO mux, so we are free to assign it to be SD CLK. Often, SD interfaces include pull-up and pull-down

resistors on the PCB. This is to ensure that safe values are present at all times, especially when the I/Os are in an

undefined state; but also because some of the SD signals are used as mode-select pins (e.g. SPI mode, 1-bit mode, etc).

In this design, we are relying on RP2040 to set the GPIO pulls. We have added the option for a pull-down for the CLK

signal (R9) should we find that in a particular application it is needed, as it is important the CLK input is in a valid state

at all times. Having said all this, we have actually included pull-ups on bits 1 and 2 of the SD data bus (R23 & R24). This

is because we haven’t wired these SD card I/Os directly to Raspberry Pi Pico, and have instead connected them via

jumper headers (pins 1 to 2 and 3 to 4 of J7), which means it’s possible to remove the jumpers and still have valid levels

on these I/Os. Obviously, if we want 4-bit operation, we must connect the jumpers first. The reason we’ve done this is,

as has been already mentioned, the SD card can also be accessed using SPI or 1-bit mode, which means that if either of

these methods are used, we can potentially repurpose data bits 1 and 2 for other uses. Which brings us to…

3.3.1. UART

Hardware design with RP2040

3.3. SD card 21

Figure 21. Schematic

section showing the

optional UART and

SWD debug header

As alluded to above, if we use the SD card in 1-bit mode, or do not even use SD card at all, we are then free to use these

pins for a UART, which is always a useful thing to have. To this end, we can simply connect a 3.3V compatible UART to

pins 1 and 3 of J7, rather than the jumpers needed for 4-bit SD card operation. Nominally, GPIO21 is UART1_RX, and

GPIO20 is UART1_TX if the dedicated hardware UART controllers are used, but if a PIO UART is implemented, then the

TX and RX selection would be configurable.

3.3.2. Debug – SWD

J7 is also home to the SWDIO and SWCLK pins on this design. If Raspberry Pi Pico or Raspberry Pi Pico W has been

attached to this PCB in such as way as to connect the debug pins, then they are made available on this header to

connect a debugger to. Of course, a debugger could also be connected directly to the Raspberry Pi Pico/Raspberry Pi

Pico W itself if this is more suitable.

3.4. Audio

This design demonstrates two different audio options that RP2040 can use, analogue PWM and digital PCM/I2S.

However, as you might expect, we cannot afford to dedicate separate pins for each solution, so these two options use

the same pins, and the choice of which is to be used is made in software. The circuitry for both audio options have been

populated, as the option not being used shouldn’t suffer any problems when driven in the wrong mode.

 NOTE

We need to remember to connect the audio output device to the correct jack: J1 for PCM and J2 for PWM.

These outputs are intended to be used as a line-level driver, and connected to an amplifier’s line-in input, but they should

also work for headphones with higher impedances. The remaining GPIOs we have available are 26 to 28, and happily,

this is all that is needed; two for PWM, and three for PCM.

3.4.1. PWM audio

Hardware design with RP2040

3.4. Audio 22

Figure 22. Schematic

section showing the

Analogue PWM audio

circuit

The first method we are going to consider is the analogue PWM. This method is the same as is used on the Raspberry

Pi 4 audio output jack, and we’ve borrowed the circuit from it. This works by taking the digital audio, and outputting it

from two GPIO pins as digital PWM (pulse width modulation) signals, one for each of the stereo pair. These digital

signals are then fed into a small logic buffer (U3). This is so that we can use our nice, clean, audio 3.3V supply we

discussed earlier, so hopefully we won’t get the digital noise from the main 3.3V supply on our audio signal. This

buffered output, which is still a 3.3V digital signal, is then fed into an analogue filter, and the result is that we get an AC-

coupled analogue signal in the audible frequency range, which we can then connect to an amp or headphones.

3.4.2. PCM/I2S audio

 NOTE

I2S audio output isn’t included in the VGA, SD card & audio design example for Raspberry Pi Pico W

Figure 23. Schematic

section showing the

Digital I2S PCM audio

circuit

The second audio option used here is digital PCM using I2S. This method takes digital audio in PCM (pulse code

modulation) format, and sends it using the I2S protocol to an audio DAC, which in turn is connected to an audio output

jack. In this design, we’ve chosen to use the PCM5101A audio DAC. GPIO27 is connected to the BCK input (bit clock),

GPIO26 to DIN (serial data), and GPIO28 to LRCK (left or right clock). The rest of the circuitry surrounding the DAC is as

per the typical application circuit in the PCM5101A datasheet.

3.5. Raspberry Pi Pico and Raspberry Pi Pico W

Hardware design with RP2040

3.5. Raspberry Pi Pico and Raspberry Pi Pico W 23

Figure 24. Schematic

section showing the

connections to

Raspberry Pi Pico

The final piece of the design is the Raspberry Pi Pico or Raspberry Pi Pico W itself.

 NOTE

All the pins of Raspberry Pi Pico W are identical to those of Raspberry Pi Pico. The only external difference between

the two devices is the debug connector, which has moved to make space for the onboard antenna on Raspberry Pi

Pico W.

We have already covered the vast majority of the connections in the preceding sections; however, there are a few pins

we haven’t covered. We’ve already discussed how the power pins are to be connected (VBUS and VSYS inputs and 3.3V

output), but as yet we haven’t really mentioned GND. All of the GND pins should be connected to ground net on our

board, and ideally to a low impedance ground plane to minimise noise and EMC emissions. There is an AGND pin on

Raspberry Pi Pico and Raspberry Pi Pico W, which is intended to be used as a low noise ADC return path. As we are not

using the ADC in this application, we simply connect this to regular GND. There is also an ADC_VREF pin, which can be

optionally used to supply a clean and stable reference as an alternative to the Raspberry Pi Pico onboard 3.3V supply,

but again, as we are not using the ADC, we can safely leave this pin floating. The RUN pin on Raspberry Pi Pico is the

reset_n (active low) for RP2040. It is pulled high (i.e. the RP2040 is running) on Raspberry Pi Pico, but with the addition

of a push button (SW1) we can pull this pin low, causing RP2040 to reset. The final pin on Raspberry Pi Pico is 3V3_EN,

which controls the 3.3V supply on Raspberry Pi Pico. As we have no need to disable this supply on this board, we can

leave this pin floating as there is a pull-up on Raspberry Pi Pico itself.

And finally, to perhaps the most important part of this design, how do we attach the Raspberry Pi Pico or Raspberry Pi

Pico W itself? There are two choices, and this design lets us pick either.

Figure 25. Close-up of

surface-mount and

through-hole pad

Hardware design with RP2040

3.5. Raspberry Pi Pico and Raspberry Pi Pico W 24

Each pin on Raspberry Pi Pico and Raspberry Pi Pico W has two soldering options. You can either solder 0.1” headers

using the through-holes, or alternatively, as both have castellated edges (where the pin extends to the edge of the board,

and then down the edge of the PCB itself), a pin can be soldered down directly to a PCB. If the SWD pins are used then

they should have an extra pin added to ensure a good connection.

Figure 26. Surface-

mount and through-

hole footprint for

attaching to Raspberry

Pi Pico

Hardware design with RP2040

3.5. Raspberry Pi Pico and Raspberry Pi Pico W 25

Figure 27. Surface-

mount and through-

hole footprint for

attaching to Raspberry

Pi Pico W

The CAD footprint provided with this design provides both options, so Raspberry Pi Pico or Raspberry Pi Pico W can

either be soldered direct to this design, or 0.1” headers may be used (or indeed, a combination of 0.1” headers and

sockets) to connect the two PCBs together.

 NOTE

In Raspberry Pi Pico W there is a cutout for the antenna (14mm × 9mm). If anything is placed close to the antenna

(in any dimension) the effectiveness of the antenna is reduced. Raspberry Pi Pico W should be placed on the edge of

a board and not enclosed in metal to avoid creating a Faraday cage. Adding ground to the sides of the antenna

improves the performance slightly.

Hardware design with RP2040

3.5. Raspberry Pi Pico and Raspberry Pi Pico W 26

Figure 28. Holes and

copper keepout areas

under the USB

connector and

testpoints on

Raspberry Pi Pico and

Raspberry Pi Pico W

Another feature of this footprint are the four drill holes visible towards the top of the board, directly underneath the

micro USB connector (see Figure 28). These are here to help the Raspberry Pi Pico or Raspberry Pi Pico W sit flat

against our carrier PCB, as the metal through-hole lugs which anchor the USB connector can sometimes protrude

slightly from the board. These holes allow any excess metal or solder to safely poke through. As well as these holes,

you can see some areas of keepout on the top copper layer. This is because the undersides of Raspberry Pi Pico and

Raspberry Pi Pico W have some testpoints, which are exposed areas of copper that get used during production testing,

and these keepouts align with the testpoints. This is not strictly necessary, as there is still solder resist (the green

insulating material on the surfaces of the PCB) on our PCB, but we consider it good practice to do so as it makes the

chances of shorting these testpoints through accidental damage, or poor PCB fabrication, almost zero. Of course, this

only applies if Raspberry Pi Pico/Raspberry Pi Pico W is soldered directly to our board. If you want to use headers to

attach Raspberry Pi Pico/Raspberry Pi Pico W, then these copper keepouts, and also the USB holes, are unnecessary

and can be removed.

 NOTE

KiCad currently doesn’t have a keepout layer in its footprints. The recommended approach, and the one we’ve used

here, is to show the keepout zones on the dwgs.user layer, and the user must then manually remove the copper on

the PCB layout itself.

This brings us to the topic of component keepouts. Obviously, if you will be directly soldering Raspberry Pi Pico or

Raspberry Pi Pico W to your board, then the entire footprint will have to have a component keepout underneath. If you

are only ever going to attach Raspberry Pi Pico/Raspberry Pi Pico W with sockets and/or headers, then you are free to

place components beneath it (provided you keep them a sensible distance from the header/sockets themselves). You

must make sure that the height of any components added underneath are less than the gap needed by the socket or

header used.

3.6. Schematics

The final part of this guide is the schematics themselves. As mentioned in the introduction to this guide, the actual

KiCad schematic files are available, and you are encouraged to go and check them out, particularly as the schematic

drawings shown below could very well now be outdated.

Hardware design with RP2040

3.6. Schematics 27

Figure 29. The

complete schematic

of the VGA, SD card &

audio design example

for Raspberry Pi Pico

Hardware design with RP2040

3.6. Schematics 28

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

A

B

C

D

E

F

A

B

C

D

E

F

Date: 2022-01-20
KiCad E.D.A. kicad (6.0.1)

Rev: REV2Size: A3
Id: 1/1

Title: RPI-PVSA VGA, SD Card & Audio Demo Board for PicoW
File: picow_vga_sd_aud.kicad_sch
Sheet: /

Raspberry Pi

(c) 2022 Raspberry Pi Ltd

R40 8.06k

+3.3V

GND

GND

GND

GND

R9

DNF GND

SW1

SW_Push

R11 47

R10 47

R7

1.8K

DAT21

DET_A10

SHIELD 11

DAT3/CD2

CMD3

VDD4

CLK5

VSS6

DAT07

DAT18

DET_B9

J3

Micro_SD_Card

GND GND

1 2

3 4

5 6

7 8

J7
Conn_02x03_Odd_Even

GND

R3

100

C14
47u

+3.3V

Raspberry Pi

GPIO01

GPIO710

GPIO811

GPIO912

GND13

GPIO1014

GPIO1115

GPIO1216

GPIO1317

GND18

GPIO1419

GPIO12

GPIO1520 GPIO16 21
GPIO17 22

GND 23
GPIO18 24
GPIO19 25
GPIO20 26
GPIO21 27

GND 28
GPIO22 29

GND3

RUN 30
GPIO26_ADC0 31
GPIO27_ADC1 32

AGND 33
GPIO28_ADC2 34

ADC_VREF 35
3V3 36

3V3_EN 37
GND 38

VSYS 39

GPIO24

VBUS 40

S
W

C
L
K

4
1

G
N

D
4
2

S
W

D
IO

4
3

GPIO35

GPIO46

GPIO57

GND8

GPIO69

U2

PicoW

R30 8.06k

H4
MountingHole

H1
MountingHole

R
2

2
1

k

R8

1.8K

GND

R33 2k

R34 4.02k

R38 2k

H3
MountingHole

H2
MountingHole

R39 4.02k

SW3
SW_Push

+3.3V

R
2

1
1

k

+3.3VA

A11

GND2

A23 Y2 4
VCC 5

Y1 6

U3
NC7WZ16P6X

R27 1k

R28 2k

R31 499

R32 1k

R2 220

R26 499

GND

R36 499

R37 1k

R1 220

GND

VBUS

C15
47u

SW4
SW_Push

+3.3V

R
2

0
1

k

GND

C4
100n

R4

100

R35 8.06k

0

1

10

11

12

13

14

15

2

3

4

5

6

7

8

9

J4
L77HDE15SD1CH4F

IN1

G
N

D
2

EN3
OUT 5

U1
TLV70033_SOT23-5

+3.3VA

C2
1u

C7
100n

GND

R29 4.02k

C8
100n

GND

C1
1u

SW2
SW_Push

+3.3V

GND

R23

10k

R24

10k

GND

S1

T2

R3 J2
AudioJack3

GND

GND

C19
10u

GND

GPIO20

GPIO13

GPIO12

GPIO11

GPIO19

GPIO28

GPIO27

VSYS

PWM_L

PWM_R

GPIO28

GPIO27

GPIO9

GPIO14

GPIO15

VGA_R

GPIO0

GPIO7

GPIO6

GPIO8

GPIO11

GPIO1

GPIO12

GPIO10

GPIO2

GPIO8

GPIO4

GPIO3

GPIO10

GPIO9

GPIO5

GPIO4

GPIO2

VGA_G

GPIO3

GPIO0

GPIO1

GPIO18

GPIO16

GPIO21

GPIO17

S
W

C
L
K

S
W

D
IO

VSYS

SWDIO

GPIO21

GPIO20

GPIO19

GPIO5

GPIO18

SD_DAT2

VGA_R

VGA_G

GPIO22

SD_DAT1

GPIO7

GPIO6

HSYNC

VSYNC

GPIO15

VGA_B

GPIO14

VGA_B

GPIO13

PWM_RR PWM_AUDIO_R

PWM_AUDIO_LPWM_LL

SD_DAT1

SD_DAT2

SWCLK

RUN

GPIO26

HSYNC

VSYNC

GPIO22

BLUE_4

UART1_TX

BLUE_1

GREEN_4

BLUE_3

UART1_RX

Button B

Button C

Button A

VGA 'DAC'

Audio Power

VGA

BLUE_0

Micro SD Card

PWM Audio

For 4-bit SD Card operation, place jumpers between 1-2 and 3-4.
To use as a UART, remove the jumpers and attach a suitable UART device.
Ensure TX is connected to RX and vice versa.

UART / 4-bit SD Selector
& Debug

BLUE_2

GREEN_0

SD_CLK

GREEN_1

GREEN_2

GREEN_3

RED_3

RED_1

RED_4

RED_2

RED_0

PicoW

SD_DAT2

SD_DAT1

SD_DAT0

SD_CMD

SD_DAT3

Figure 30. The

complete schematic

of the VGA, SD card &

audio design example

for Raspberry Pi Pico

W

Hardware design with RP2040

3.6. Schematics 29

Appendix A: Using the rescue debug
port

Overview

The rescue debug port (DP) on RP2040 can be used to reset the chip into a known state if the user has programmed

some bad code into the flash. For example some code that turned off the system clock would stop the processor debug

ports being accessed, but the rescue DP would still work because it is clocked from the SWCLK of the SWD interface.

On the Raspberry Pi Pico, the BOOTSEL button can be used to force the chip into BOOTSEL mode instead of executing

the code in flash. The rescue DP is intended for use in designs that use an RP2040 but don’t have a BOOTSEL button.

 NOTE

For further information on how to configure SWD see the Getting started with Raspberry Pi Pico book.

Activating the rescue DP from OpenOCD

The RP2040 port of OpenOCD provides two targets:

• rp2040.cfg

• rp2040-rescue.cfg

rp2040-rescue.cfg connects to the rescue debug port with id 0xf.

To use the rescue DP, start OpenOCD with the rp2040-rescue configuration.

$ openocd -f interface/raspberrypi-swd.cfg -f target/rp2040-rescue.cfg
...
Warn : gdb services need one or more targets defined
Now attach a debugger to your RP2040 and load some code
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections

Ctrl + C

Now start OpenOCD with the normal rp2040 configuration.

$ openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

To verify the rescue DP restarted the chip, you can check the VREG_AND_POR.CHIP_RESET register: 0x40064008. Bit 20 of this

register is the HAD_PSM_RESTART bit.

In another terminal connect to the OpenOCD telnet port and use mdw (memory display word) to read the CHIP_RESET

register. If the rescue DP restarted the chip, then the value will be 0x00100000, aka bit 20 will be set.

Hardware design with RP2040

Overview 30

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

$ telnet 127.0.0.1 4444
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Open On-Chip Debugger
> mdw 0x40064008
0x40064008: 00100000

You can now load code as described in Use GDB and OpenOCD to debug Hello World in Getting started with Raspberry

Pi Pico book.

Hardware design with RP2040

Activating the rescue DP from OpenOCD 31

https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf#gdb-openocd-hello-world
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf

Appendix B: Documentation release
history

Table 2.

Documentation

release history

Release Date Description

1.0 21 Jan 2021 • Initial release

1.1 26 Jan 2021 • Minor corrections

• Extra information about using DMA with ADC

• Clarified M0+ and SIO CPUID registers

• Added more discussion of Timers

• Update Windows and macOS build instructions

• Renamed books and optimised size of output PDFs

1.2 01 Feb 2021 • Minor corrections

• Small improvements to PIO documentation

• Added missing TIMER2 and TIMER3 registers to DMA

• Explained how to get MicroPython REPL on UART

• To accompany the V1.0.1 release of the C SDK

1.3 23 Feb 2021 • Minor corrections

• Changed font

• Additional documentation on sink/source limits for RP2040

• Major improvements to SWD documentation

• Updated MicroPython build instructions

• MicroPython UART example code

• Updated Thonny instructions

• Updated Project Generator instructions

• Added a FAQ document

• Added errata E7, E8 and E9

1.3.1 05 Mar 2021 • Minor corrections

• To accompany the V1.1.0 release of the C SDK

• Improved MicroPython UART example

• Improved Pinout diagram

1.4 07 Apr 2021 • Minor corrections

• Added errata E10

• Note about how to update the C SDK from Github

• To accompany the V1.1.2 release of the C SDK

Hardware design with RP2040

Appendix B: Documentation release history 32

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e7
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e8
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e9
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e10

Release Date Description

1.4.1 13 Apr 2021 • Minor corrections

• Clarified that all source code in the documentation is under the

3-Clause BSD license.

1.5 07 Jun 2021 • Minor updates and corrections

• Updated FAQ

• Added SDK release history

• To accompany the V1.2.0 release of the C SDK

1.6 23 Jun 2021 • Minor updates and corrections

• ADC information updated

• Added errata E11

1.6.1 30 Sep 2021 • Minor updates and corrections

• Information about B2 release

• Updated errata for B2 release

1.7 03 Nov 2021 • Minor updates and corrections

• Fixed some register access types and descriptions

• Added core 1 launch sequence info

• Described SDK "panic" handling

• Updated picotool documentation

• Additional examples added to Appendix A: App Notes appendix

in the Raspberry Pi Pico C/C++ SDK book

• To accompany the V1.3.0 release of the C SDK

1.7.1 04 Nov 2021 • Minor updates and corrections

• Better documentation of USB double buffering

• Picoprobe branch changes

• Updated links to documentation

1.8 17 Jun 2022 • Minor updates and corrections

• Updated setup instructions for Windows in Getting started with

Raspberry Pi Pico

• Additional explanation of SDK configuration

• RP2040 now qualified to -40°C, minimum operating temperature

changed from -20°C to -40°C

• Increased PLL min VCO from 400MHz to 750MHz for improved

stability across operating conditions

• Added reflow-soldering temperature profile

• Added errata E12, E13 and E14

• To accompany the V1.3.1 release of the C SDK

Hardware design with RP2040

Appendix B: Documentation release history 33

https://opensource.org/licenses/BSD-3-Clause
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e11
https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-c-sdk.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e12
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e13
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e14

Release Date Description

1.9 30 Jun 2022 • Minor updates and corrections

• Update to VGA board hardware description for launch of

Raspberry Pi Pico W

• To accompany the V1.4.0 release of the C SDK

Pico and Pico W databooks combined into a unified release history

2.0 01 Dec 2022 • Minor updates and corrections

• Added RP2040 availability information

• Added RP2040 storage conditions and thermal characteristics

• Replace SDK library documentation with links to the online

version

• Updated Picoprobe build and usage instructions

2.1 03 Mar 2023 • A large number of minor updates and corrections

• SMT footprint of Pico W corrected

• Updated for the 1.5.0 release of the Raspberry Pi Pico C SDK

• Added errata E15

• Added documentation around the new Pico Windows Installer

• Added documentation around the Pico-W-Go extension for

Python development

• Added a wireless networking example to the Python

documentation

• Added package marking specifications

• Added RP2040 baseline power consumption figures

• Added antenna keep out diagram to Pico W datasheet

2.2 14 Jun 2023 • Minor updates and corrections

• Updated for the 1.5.1 release of the Raspberry Pi Pico C SDK

• Documentation around Bluetooth support for Pico W

2.3 02 Feb 2024 • Numerous minor updates and corrections

• Update ROSC register information

• Updated getting started documentation for MS Windows and

Apple macOS

• Updates arising from the release of Raspberry Pi 5

• Reintroduced updated SDK library documentation (was

withdrawn in 2.0 due to XML conflicts)

• Updated to include the new recommended part number for

crystals used with RP2040

• Added new paste stencil information for Pico and Pico W

• Other updates to supporting documentation

Hardware design with RP2040

Appendix B: Documentation release history 34

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf#errata-e15
https://github.com/raspberrypi/pico-setup-windows
https://marketplace.visualstudio.com/items?itemName=paulober.pico-w-go

The latest release can be found at https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf.

Hardware design with RP2040

Appendix B: Documentation release history 35

https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf

